GUJARAT UNIVERSITY-BE SEM VIII-CIVIL ENGG CE805 FIELD APPLICATION OF GEOTECHNICAL ENGG (EP-II)

Q-1	State and explain 'Skempton's' bearing capacity equation.
Q-2	A rectangular footing 1.5x1.5m rests on a clayey layer at a depth of
_	1.5m. Determine the safe bearing capacity of soil by
	1) Terzaghi's equation
	2) Skempton's equation
	Use $E= 18 \text{ kN/m}^2$, $Cu= 30 \text{ kN/m}^2$ and factor of safety=2.5.
Q-3	Define 'Foundation modulus'. How it is obtained, Explain in brief.
Q-4	State and explain Terzaghi's bearing capacity equation and state how it
	differs from Hason's bearing capacity equation.
Q-5	Discuss the effect of contact pressure and rigidity of raft in the analysis
	of raft foundation.
Q-6	Briefly describe effect of inclination and eccentricity of load on footing.
Q-7	A building has to be supported on R.C, raft foundation of dimension
	14mx21m. The soil is clay, having an average unconfined compressive $\frac{1}{2}$
	strength of 15 kN/m ² . The pressure on the soil due to the weight of the
	building and the loads that it has to carry will be 140 kN/m ² at the base
	of raft. The building has provision for basement floors. At what depth
	the bottom of the raft placed to provide a factor of safety 3 against shear
	ailure? Use skempton's approach for bearing capacity calculations.
Q-8	Discuss various zones of failure in Mayerhoff's theory. How does this
	theory differ from Terzaghi's theory?
Q-9	Explain effect of inclination of base of foundation and footings on
0.10	slopping ground on the bearing capacity.
Q-10	A 1.5m size square footing is supported by granular soil at 1.2m depth
	below existing ground surface. Using Terzagni s equation, determine the
	sale bearing capacity of the footing fi water table is at the base of facting. Soil properties are $v = 17 \text{ kN/m}^2$ $Q = 27 \text{ dog}$ No= 72.06 No=
	100 mig. Som properties are $\gamma = 17$ km/m, $\omega = 57$ deg, $m = 72.90$, $m = 65.60$ E S = 3
0-11	Define Amplitude Free Vibration Resonance Forced vibration
Q=11	Damping Degree of freedom
0-12	A 40 kN vertical compressor foundation system is operated at 40Hz
X 1-	Foundation soil having $Cu = 4x104 \text{ kN/m}^3$. The weight of foundation
	and weight of soil participating in vibration is 16 kN and 20 kN resp.
	The base area of foundation is $6m^2$. Take damping factor = 0.1.
	Determine the natural frequency and magnification factor.
Q-13	Write in brief about types of machine & machine foundation.
Q-14	Discuss various dynamic formulae. What are their limitations?
Q-15	Discuss about the degree of freedom of a block foundation.
Q-16	Discuss the general criteria for designing a safe machine foundation.
Q-17	Resonance occurs at a frequency of 20 cps in the vertical vibration of a
	test block of 1mx1mx1m. Calculate the coefficient of elastic uniform

	compression. The mass of oscillator is 50 kg.
Q-18	Discuss the use of single degree freedom system in the analysis of
	machine foundations. What are its limitations?
Q-19	Discuss criteria for the design of foundation in the following cases:
	1) free vibrations with damping
	2) forced vibrations without damping
Q-20	What is meant by vibration isolation? How is it done?
Q-21	Write short note on "Negative skin friction"
Q-22	What is adhesion factor? Why it is used for piles in clay only?
Q-23	Explain principles and methods of placing foundation on expansive
	soil.
Q-24	Justify the statement: "under-reamed piles provide better solution for
	foundation in expansive soil". Give codal provisions for under-reamed
	piles.
Q-25	A 12 m long 300 mm diameter pile is driven in a uniform deposit of
	sand: $\emptyset = 40^{\circ}$. The water table is at a great depth and is not likely to
	rise. The average dry unit weight of sand is 18 KN/m^3 . Using Nq= 135.
	Calculate the safe load capacity of the pile with factor of safety 2.5.
Q-26	A concrete pile of 45 cm diameter is driven through a system of
	layered cohesive soil. The length of pile is 16 m. The following data
	are available. The water table is closed to the ground surface.
	Top layer 1: soft lay, thickness = 8m, unit cohesion $c= 30 \text{ KN/m}^2$,
	adhesion factor $\alpha = 0.90$.
	$\alpha = 0.75$.
	Layer 3: stiff stratum extends to a great depth unit cohesion $Cu = 105$
	KN/m ² . And $\alpha = 0.5$. compute Qu and Qa with factor of safety 2.5.
Q-26	Describe in brief types of piles
Q-27	Differentiate between shallow foundation and deep foundation
Q-28	A reinforced concrete pile of soils 30x30 cm and 10 m long is driven
	into course sand extending to a great depth. The average unit weight of
	soil is 18KN/m ³ . And the average N-value is 15. Detri9ne the
	allowable load on the pile by making use of the N-value. Use factor of
	safety.
Q-29	The following are the results of a maintained pile load test on a 400mm
	dia pile:
	Load (KN) 200 500 1000 1000 1500 1600 1700
	Settlement (mm): 2 4 8 14 22 30 50
	Determine the ultimate load and also safe load according to
	IS:2911(part IV)
Q-30	Differentiate between displacement piles and non-displacement piles.
	Where would you prefer each?

Q-31	Discuss the factors affecting group efficiency of pile group.
Q-32	Discuss the criteria for determining grip length of a well foundation.
Q-33	Explain with the help of neat diagram, various applications of soil
	reinforcement.
Q-34	What are the types of soil reinforcement? State the advantages of
	reinforced earth structures.
Q-35	Name major functions of geotextile and explain anyone in detail.
Q-36	Draw a typical reinforced earth wall and explain the importance of
	maximum tension line in it.
O-37	Comment on the following statements:
X 57	comment on the rono wing statements.
2 57	(i) Settlement of a pile group is always more than an individual pile.
X SY	(i) Settlement of a pile group is always more than an individual pile.(ii) The principal effect of negative skin friction is to reduce the
Q ST	(i) Settlement of a pile group is always more than an individual pile.(ii) The principal effect of negative skin friction is to reduce the factor of safety.
	 (i) Settlement of a pile group is always more than an individual pile. (ii) The principal effect of negative skin friction is to reduce the factor of safety. (iii) In a pile group the pile driving work should be carried
	 (i) Settlement of a pile group is always more than an individual pile. (ii) The principal effect of negative skin friction is to reduce the factor of safety. (iii) In a pile group the pile driving work should be carried from centre to out ward.
Q-38	 (i) Settlement of a pile group is always more than an individual pile. (ii) The principal effect of negative skin friction is to reduce the factor of safety. (iii) In a pile group the pile driving work should be carried from centre to out ward. Differentiate between skin resistance and tip resistance of pile in clay.
Q-38 Q-39	 (i) Settlement of a pile group is always more than an individual pile. (ii) The principal effect of negative skin friction is to reduce the factor of safety. (iii) In a pile group the pile driving work should be carried from centre to out ward. Differentiate between skin resistance and tip resistance of pile in clay. Discuss various dynamic formulae. What are their limitations?